Status of decommissioning in Denmark

By Kirsten Hjerrild Nielsen Head of Department: Waste, Decommissioning and Operation

Contents

1. General introduction to DD

- 2. DR 3 decommissioning
- 3. Hot Cells decommissioning

Risø history

- 1956-58: Risø National Laboratory was established
- Aim: To prepare for the introduction of nuclear power in Denmark
- Research areas in the first 20-25 years: Reactor physics and technology, physics, chemistry, health physics, electronics, metallurgy

Risø history

- 1976: Scope broadened to include research in other energy sources (wind, oil/gas)
- 1985: Parliament decided that nuclear power should not be introduced in Denmark
- Subsequently, RNL's nuclear related research was reduced
- 2000: DR 3 reactor closed; decommissioning planning started

DD

 Established in 2003 as a separate organisation under Ministry of Science, Technology and Innovation

• Tasks:

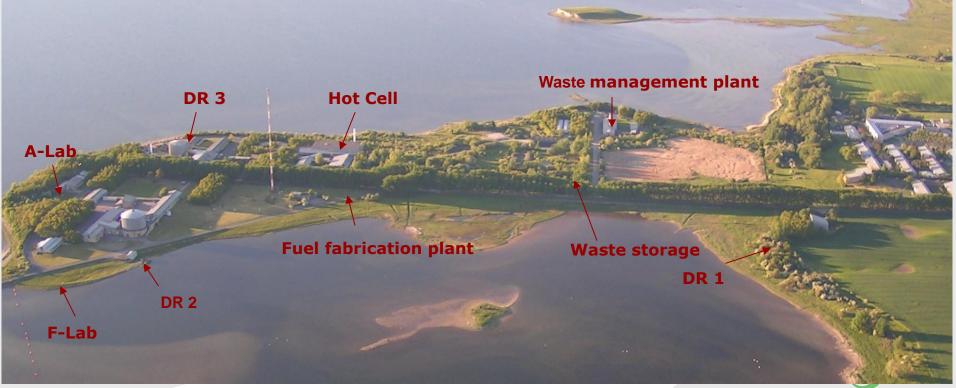
- Decommission RNL to "greenfield"
- Receive, treat and store Danish radioactive waste
- Assist in a long-term solution for waste

DD

- Time frame for the decommissioning: up to 20 years from 2003
- Estimated total cost: ~1.8 billion DKK (~260 M\$ ~240 M€) (2017 price level)
- Excluding costs for a longterm solution for the waste

Government decision 2018

- Intermediate storage of waste continues at Risø for a period of up to 50 years. Storage facilities will be upgraded and moved onto higher grounds to ensure safekeeping of the waste
- Efforts to find an international solution for the 233 kg of special waste are continued
- Geological survey of the Danish possibilities for a deep facility for all waste is initiated
- A thorough political process involving municipalities and other relevant stakeholders is planned and executed



To be decommissioned

- Reactor DR 1 ✓
- Reactor DR 2 🗸
- Reactor DR 3 ongoing until 2022
- Hot Cell facility ongoing until 2022
- Fuel Fabrication Plant work completed in 2015, contamination in basement to be removed in 2020
- Waste Management Plant in operation planning of decommissioning is ongoing

Location of DD facilities

NKS Radworkshop 8.-10. October 2018

DANSK DEKOMMISSIONERING

DR 1

- 2 kW thermal power
- In operation 1957-2001
- Primarily used for demonstration/instruction
- Decommissioned 2004-2005
- Reactor building and surrounding areas released for unrestricted use in January, 2006

DR 2

- 5 MW effect, open pool tank
- In operation 1959-1975
- Physics experiments and production of isotopes
- Decommissioned 2006-2008
- Now used by DD to handle large units of radioactive waste

DR 2 decommissioning

 Plasma cutting of the lead nose of the thermal coulomb

Demolishing the DR 2 reactor block

NKS Radworkshop 8.-10. October 2018

Fuel Fabrication

- The plant produced fuel elements for DR 2 + DR 3
- Decommissioning work finalised, Release from regulatory control expected in 2018
- Mainly decontamination of walls/floors and removal of equipment, ventilation and drainage systems
- Unexpected contamination in part of the basement

Fuel Fabrication Plant

Wall shaver during shaving the ceiling in the powder room

Sawing of the floor in the powder room

Removal of the concrete floor by milling

Decommissioning planning

- Gather historical informations
- Characterize
- Brainstorming
- Option analysis (for large and complex tasks)
- Project describtion (to be approved)
- Sub project describtions (to be approved)
- Work plans

Executing

- We primary use our own workers
- Contractors for special tasks

□ Lift of heavy components (TSP, TSR, Shutters)

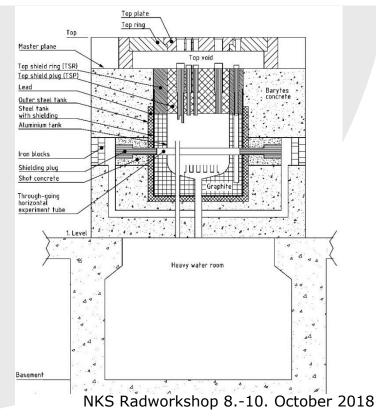
□ Complex constructions (MTS, DR 3)

Demolishing of concrete

• No outsourcing of whole projects

Contents

General introduction to DD DR 3 decommissioning Hot Cells decommissioning



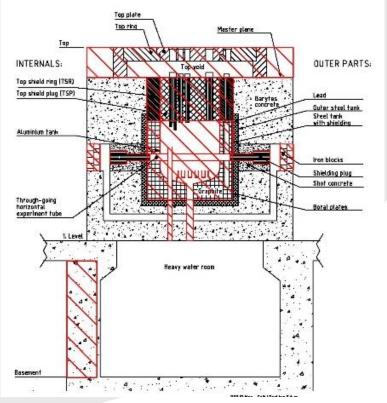
DR 3

- 10 MWth, D₂O cooled and moderated MTR
- In operation 1960-2000
- Physics experiments, production of isotopes and neutron transmutation doped silicon
- Decommissioning of the reactor block started in 2012 and is scheduled to finish in 2022

The DR 3 Reactor Block

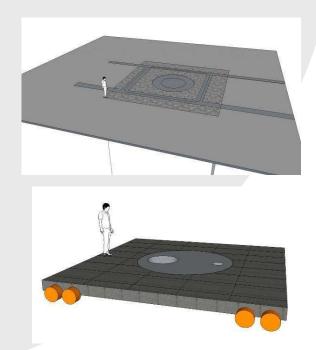
- Top Shield Plug (TSP)
- Reactor Aluminium Tank (RAT)
- Top Shield Ring (TSR)
- Graphite reflector
- Cast lead
- Boral plates
- Inner steel tank
- Lead shielding
- Outer steel tank
- Biological shield (baryte concrete with shot concrete around the core zone)
- D₂O plant room

Decom. strategy for DR 3


- Auxiliary systems removed (2011)
- Primary circuit (D₂O) removed (2012)
- Internals dismantled (2018)

□Inside out

Biological shield demolished (2020)
Top down

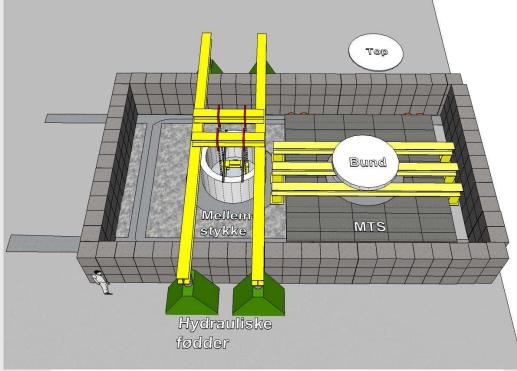

Current status

- The red marked areas have been removed:
- Internals:
 - \square TSP and TSR removed \checkmark
 - Reactor Aluminium Tank
 - Graphite reflector ongoing, last layer
 - Thin layer of lead autumn 2018

Auxiliaries Movable Top Shield (MTS)

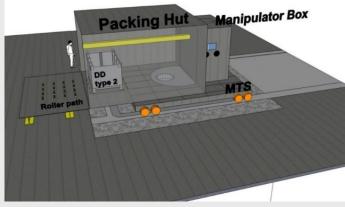
• Rail system on the reactor top

• MTS is able to move independently of the polar crane


Auxiliary equipment Movable Top Shield (MTS)

Top Shield Plug (TSP)

Removal of Top Shield Plug


Lift of TSP from the reactor into the shielding

Transport of the TSP out from the reactor building

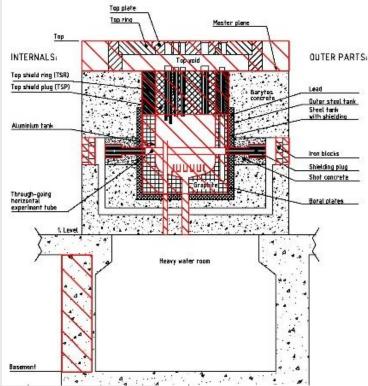
Packing Hut and Manipulator Box

- Sealed and controlled area
- Forms a barrier between the reactor pit and reactor hall
- Prepacked steel containers with a good degree of filling

 Room for taking out the cut up parts of the RAT and the graphite blocks with a manipulator arm

Packing Hut and Manipulator Box

Remote plasma cutting of the Reactor Aluminium Tank



Remote removal of the graphite reflector

Remaining tasks

- Outer parts (2019-2020):
 - Boral plates
 - □ Steel tank with lead
 - □ Shot concrete
 - □ Baryte concrete

External parts

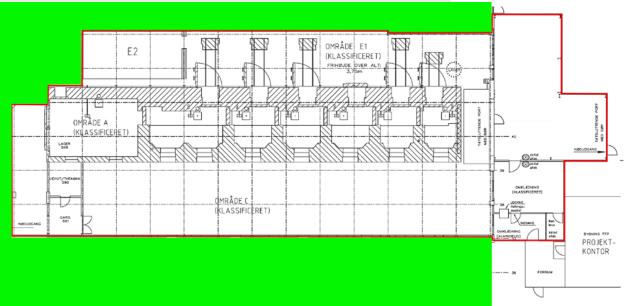
• Steel tank with lead and baryte concrete:

Wall saw cutting with different saw blades

Steel ball concrete
Scabling

Contents

- 1. General introduction to DD
- 2. DR 3 decommissioning
- **3. Hot Cells decommissioning**



Hot Cells

- A row of six concrete cells remains in a building with other activities (DTU)
- In operation 1960-1989, partly decommissioned in 1990-1993
- Used for investigating of irradiated reactor fuel and for packaging of radioactive sources
- Final decommissioning started in 2008 and is scheduled to finish in 2022

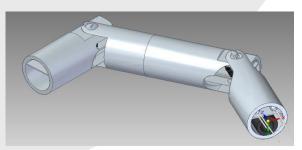
Plan of the Hot Cell Facility

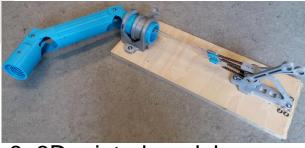
White area inside the red line: Classified area with the hot cells Green area: Offices and laboratories (Danish Technical University)

Decommissioning framework

- Neighbors 'all around'
- Very limited space
- Dose rate too high for manual cleaning (~6 mSv/h)
- α -, β -, and γ -contamination
- Decommissioning to greenfield
- Method chosen: Decontamination by remote blasting with steel grit

Rebuild of the ventilation system


- ISO 17873: "Nuclear facilities Criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors"
- Overview:
 - Depression of cells: -150-220 Pa
 - Air velocity in openings: 1 m/s
 - Depression nearest surroundings: -50 to -100 Pa
- Necessary to vacate DTU-offices to the south
- Moving filters from the roof

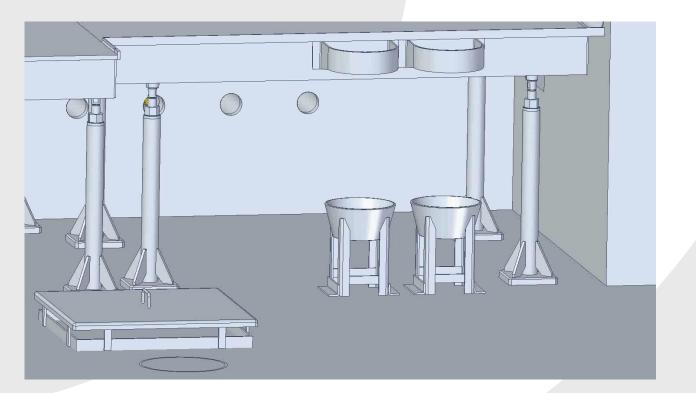

Developement of mechanichal arms

1. Generating the idea

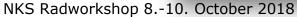
2. 3D compter model

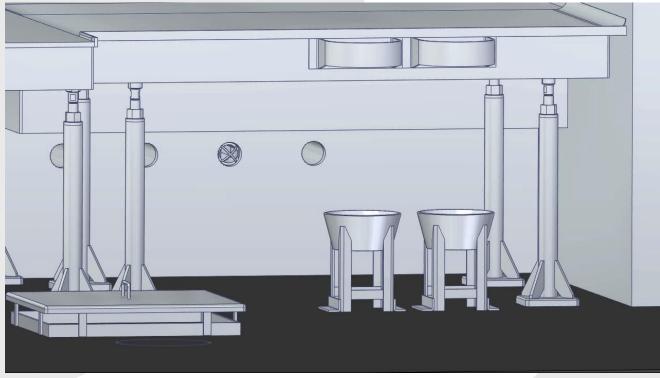

3. 3D printed model

4. Construction in steel

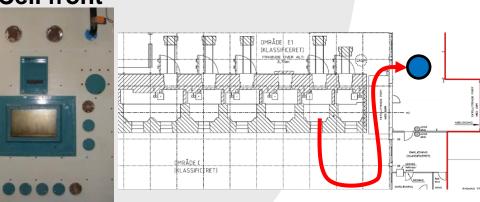


Principle of the mechanical arms


Remote Blasting


Material extraction

- Main challenge: Limited by a 50mm extraction hoze
- Flexibility to reach all horizontal surfaces
- Developing the arm almost done and is being tested
- Mock up tests



Material extraction

Remote Blasting Cell front Vacuum extractor

Blasting

Material extraction

NKS Radworkshop 8.-10. October 2018

Filling drums

Remote Blasting

Risø Hot Cells 2017 Blast Cleaning

Dose rates inside the cells

	Cell 6	Cell 5	Cell 4	Cell 3	Cell 2	Cell 1 (double cell)
Initial average dose [mSv/h]	0,1	0,5	0,1	1,9	1,65	2,1 + two hotspots (15,5+23,1)
Average dose rate after remote blasting [mSv/h]	0,03	0,2	0,04	0,27	0,25	Ongoing
Hotspot left after remote blasting [mSv/h]	0,2	1,3	None	0,8	0,8	Remote blasting has not been completed yet

Hot Cells – future tasks

- Removal of hot spots
- Removal of interior (tables etc.)
- Intermediate remote blasting (robot)
- Removal of heavy interior (doors, shutters etc.)
- Manual "fine cleaning" for clearance

Thank you for your attention!

Questions